AR161014

BLF188XR, 41MHz

V1.0 — March 18th 2016

-

AMPLEON Application Measurement Report

Document information			
Status	company confidential		
Author(s)	Hans Kartman,		
Abstract	Measurement results of a Class C design for the 41MHz band with the BLF188XR		

BLF188XR

41MHz

1. Revision History

Table 1: Report revisions				
Revision	on Date	Description	Author	
1.0	18032016	Initial document	Hans Kartman	
1.0	18032016	Initial document	Hans Kartma	

2. Contents

1.	Revision History	2
2.	Contents	2
3.	General description	
4.	Biasing	4
5.	Layout drawings and components	4
6.	Measurement results.	7
7.	Mismatch/Ruggedness testing	8
8.	Baseplate	9
9.	Legal information	
9.1	Definitions	
9.2	Disclaimers	
9.3	Trademarks	
9.4	Contact information	

Application Measurement Report

3. General description

This report presents the measurement results of the Class C demo AR161014. The device used is a BLF188XR, 6th generation extremely rugged LDMOS transistor in a ceramic push-pull package. The presented demo is tuned for 41MHz.

The amplifier demo is primarily developed to generate RF power for CO2 lasers and plasma chambers.

The demo amplifier should be supplied with adequate cooling of the transistor and the circuit. For this purpose the baseplate is equipped with a water channel.

Below a picture of the demo is shown.

4. Biasing

The Amplifier was designed for use at Vds=50Volts primarily. At this bias condition the amplifier is capable of producing 1200 Watts, under pulsed as well as under full CW conditions.

Alternate measurements were done at Vds=30Volt, because of the requirement to produce about 400Watts CW or pulsed with high efficiency. By reducing the Vds to 30 Volts and keeping the Idq at 200 mA this requirement can be met.

The biasing is as follows:

Vds	=	50V / 30V for power reduced to 400Watts
ldq	=	200mA total

To set the ldq to the appropriate value the gate voltage is first set to 0 Volts, then the drain supply voltage is switched on. Next the gate voltage is slowly increased to the voltage where the ldq is 200mA. The gate voltage for this ldq level is around 1.6 Volts.

5. Layout drawings and components

Output circuit:

BLF188XR

AR161014

41MHz

Output Board				
Comp	Value	alue manufacturer		
C1	30pF	ATC	800B	
C2,C3	47pF	ATC	800B	
C4,C5	82pF	ATC	800B	
С6,	30pF	ATC	800B	
C7,C8	47pF	ATC	800B	
C9,C10	82pF	ATC	800B	
C11,	15р	ATC	800B, 15mm from transistor case edge	
C12	12p	ATC	800B	
C13,C18	82p	ATC	800B	
C14,C17	1nF	ATC	100B	
C15,C16	220pF	ATC	800B	
C19, C20	1nF	ATC	100B, 44mm from left edge board, not critical	
C21,C22	100nF	ТДК	Ceramic multilayer	
C23,C24	4.7uF	ТДК	Cer	
C26,C26	470uF	Elro	63V Electrolitic	
C27,C28 1nF		ATC	800B	
L1, L2	Aircoil 6turns, 6mm diameter		Enamel 1mm copper wire	
Board	Ro 4350	Rogers	Er=3.5	
Thermal conductor under Balun	Thermipad TP22626	Mueller Ahlhorn		
Baseplate	Copper with cooling channel		Cavities for coplanar baluns are 5mm deep	

Input circuit:

Input Board				
Comp	Value	manufacturer	remarks	
C1	560pF	ATC	100B	
C2	470pF	ATC	100B	
C3	470pF	ATC	100B	
C4	100pF	ATC	100B	
C5	100n	ATC	100B	
C6	100n	ATC	100B	
C7,C8	1n	ATC	100B	
R1	22Ohm		0812	
R2	22Ohm		0812	
Board	Ro 4350	Rogers	Er=3.5	

DOTpro v1 r8

BLF188XR

6. Measurement results.

AMPLEON BLF188XR

AR161014

7. Mismatch/Ruggedness testing

This amplifier uses the extremely rugged BLF188XR LDmos transistor to make it capable of widthstanding high VSWR mismatch loads. VSWR ruggedness testing is done using a phase unit capable of VSWR >65:1. As the phase unit cannot do 360 degrees phase, the phase is shifted in steps by using some lengths (up to 2 meters of RG214 in series with the phase unit to be able to test the full smithchart perimeter. As the operating frequency is low the losses of this added cable are low, resulting in high VSWR test values. The lower VSWR values are produced by using attenuators between the demo amplifier and the phase unit.

Testing is always done in pulsed mode because full CW testing would result in extreme thermal stress of the amplifier as well as the transistor.

F=41MHz, Vds=50Volts, Idq=0.2A total, Pulsed measurement: tp=100usec, duty cycle=10%				
VSWR:1	Pload (W)			
All phases	600	900	1200	Remarks
3	Pass	Pass	Pass	Attennuator used
10	Pass	Pass	Pass	Attennuator used
65	Pass	Pass	Pass	

Test results are given in the table below.

BLF188XR

8. Baseplate

The demo amplifier pcb boards are mounted on a full copper base plate. The base plate contains a waterchannel to supply the amplifier with sufficient cooling.

The base plate contains two cavities for the coplanar baluns. The input balun cavity is airfilled. The output balun cavity is filled with a thermal conductive material that has good electrical properties. The material is conducting the heat from the balun, generated as a result of RF losses, to the baseplate. The thermal conductive material is absolutely nescessary to cool the coplanar output balun.

A drawing of the base plate is shown below.

Output_41MHz_copla BLF188XR_41MHz_inp nar1.dxf ut_1.2.dxf

Application Measurement Report

BLF188XR

9. Legal information

9.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

9.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accepts no liability for inclusion and/or use of Ampleon products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

9.4 Contact information

For more information, please visit: <u>http://www.ampleon.com</u>

For sales office addresses, please visit: http://www.ampleon.com/sales

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

9.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of the NXP group of companies and any reference to or use of the 'NXP' trademarks will be replaced by reference to or use of Ampleon's own trademarks.

Application Measurement Report