AN10885

AMPLEON

Doherty RF performance analysis using the BLF7G22LS-130Rev. 3 — 1 September 2015Application not

Application note

Document information

Info	Content
Keywords	RF power transistors, Doherty architecture, LDMOS, power amplifier, RF performance, Digital PreDistortion (DPD), UMTS, W-CDMA, BLF7G22LS-130
Abstract	This application note describes a state-of-the-art power amplifier design for UMTS base stations using the BLF7G22LS-130 LDMOS transistor

Revision history

Rev	Date	Description
AN10885#3	20150901	Modifications
		 The format of this document has been redesigned to comply with the new identity guidelines of Ampleon.
		 Legal texts have been adapted to the new company name where appropriate.
AN10885#2	20100225	Application note
AN10885#1	20100106	Initial version

Contact information

For more information, please visit: http://www.ampleon.com

For sales office addresses, please visit: http://www.ampleon.com/sales

AN10885#3

Application note

1. Introduction

This application note describes a state-of-the-art power amplifier design for UMTS base stations using the BLF7G22LS-130 LDMOS power transistor. The amplifier design characteristics and the test methods used to determine the RF performance are also described.

The amplifier uses two BLF7G22LS-130 devices in a Doherty architecture on a Rogers 3006 PCB having a thickness of 0.64 mm (0.025"). The design ensures high-efficiency while maintaining a very similar peak power capability of two transistors combined. The input and output sections are internally matched, benefiting the amplifier design with high gain and good gain flatness and phase linearity over a wide frequency band.

The BLF7G22LS-130 is a seventh generation LDMOS device using Ampleon's advanced LDMOS process.

2. Test summary

The amplifier was characterized under the following conditions:

- Network analyzer measurements for power gain (G_p), delay (t_d) and Input Return Loss (IRL) at:
 - output power (P_L) = 47 dBm
 - drain-source voltage (V_{DS}) = 28 V
 - main power amplifier quiescent drain current (I_{Dq}) = 900 mA
 - gate-source voltage of peak amplifier (V_{GS (peak)}) = 0.5 V
- CDMA Interim Standard (IS-95) at V_{DS} = 28 V, I_{Dq} = 900 mA and V_{GS} = 0.5 V
- 2-carrier W-CDMA (15 MHz spacing), V_{DS} = 28 V, I_{Dq} = 900 mA and V_{GS (peak)} = 0.5 V
- Peak output power (P3dB) capability using CDMA IS95 signal, ratio of peak power to average power = 9.7 dB at 0.01 % probability, V_{DS} = 28 V, I_{Dq} = 900 mA and $V_{GS (peak)}$ = 0.5 V
- Output power 3 dB compression point using pulsed signal, width = 12 μ s, 10 % duty cycle at V_{DS} = 28 V, I_{Dq} = 900 mA and V_{GS (peak)} = 0.5 V
- Digital PreDistortion (DPD) measurements using a DPD system, 2-carrier W-CDMA signal, Peak-to-average ratio (PAR) = 7.5 dB at 0.01 % probability (total signal), V_{DS} = 28 V, I_{Da} = 900 mA, V_{GS (peak)} = 0.5 V

Table 1. Performance summary

Frequency (GHz)	G _p at 47 dBm (dB)	IRL at 47 dBm (dB)	P3dB pulsed 12 μs pulse width (dBm)	IMD3 (no correction) at 47 dBm (dB)	IMD3 with DPD at 47 dBm (dB)	Drain efficiency (η _D) at 47 dBm (%)
2.11	17.2	-14.0	54.4	-31.3/-30.9	-60.2/-59.6	44.2
2.14	17.3	-15.5	54.4	-33.4/-33.0	-59.8/-58.4	42.9
2.17	17.2	-17.0	54.4	-33.8/-34.7	-59.4/-57.9	42.2

3. **RF performance**

3.1 Network analyzer measurements

Network analyzer measurements were performed under the following conditions:

- P_L = 47 dBm
- V_{DS} = 28 V
- I_{Da} = 900 mA
- V_{GS (peak)} = 0.5 V

3.2 IS-95 measurements

The IS-95 measurements were performed under the following conditions:

- Bias: V_{DS} = 28 V
- I_{Da} = 900 mA
- V_{GS (peak)} = 0.5 V

3.3 2-carrier W-CDMA measurements

These measurements were performed under the following conditions:

- Channel bandwidth = 3.84 MHz, spacing: 15 MHz
- Bias: V_{DS} = 28 V
- I_{Dq} = 900 mA
- V_{GS (peak)} = 0.5 V
- Heatsink temperature (T_h) = 25 °C

Application note

3.4 Peak output power measurements

Two methods were used to measure peak output power.

- Using a standard IS-95 signal (PAR = 9.7 dB at 0.01 % probability on the CCDF), determining the output power where the PAR reaches 6.7 dB at 0.01 % probability on the CCDF, measured as the 3 dB compression point
- · Using the pulsed signal, measuring the 3 dB compression points

The peak power measurements were performed under the following conditions:

- Bias: V_{DS} = 28 V
- I_{Da} = 900 mA
- V_{GS (peak)} = 0.5 V

3.5 DPD measurements

The DPD measurements were performed using an in-house designed DPD system.

The following DPD measurements were performed under the following conditions:

- f_c = 2110 MHz
- DPD system: 2-carrier W-CDMA signal, spacing: 15 MHz
- V_{DS} = 28 V, I_{Dg} = 900 mA, V_{GS (peak)} = 0.5 V
- IMD3 at 47.23 dBm, 15 MHz offset (integrated bandwidth = 3.84 MHz) uncorrected (no DPD applied): -31.3 dB and -30.9 dB
- IMD3 at 47.24 dBm, 15 MHz offset (integrated bandwidth = 3.84 MHz) corrected (DPD applied): -60.2 dB and -59.6 dB

• IMD3 correction = 28.9 dB and 28.7 dB

The following DPD measurements were performed under the following conditions:

- f_c = 2140 MHz
- DPD system: 2-carrier W-CDMA signal, spacing: 15 MHz
- V_{DS} = 28 V, I_{Dq} = 900 mA, V_{GS (peak)} = 0.5 V
- IMD3 at 47.16 dBm, 15 MHz offset (integrated bandwidth = 3.84 MHz) uncorrected: -33.4 dB and -33.0 dB
- IMD3 at 47.14 dBm, 15 MHz offset (integrated bandwidth = 3.84 MHz) corrected: -59.8 dB and -58.4 dB
- IMD3 correction = 26.4 dB and 25.4 dB

The following DPD measurements were performed under the following conditions:

- f_c = 2170 MHz
- DPD system: 2-carrier W-CDMA signal, spacing:15 MHz
- V_{DS} = 28 V, I_{Dq} = 900 mA, $V_{GS (peak)}$ = 0.5 V
- IMD3 at 47.04 dBm, 15 MHz offset (integrated bandwidth = 3.84 MHz) uncorrected: -33.8 dB and -34.7 dB
- IMD3 at 47.13 dBm, 15 MHz offset (integrated bandwidth = 3.84 MHz) corrected: -59.4 dB and -57.9 dB
- IMD3 correction = 25.6 dB and 23.2 dB

4. BLF7G22LS-130 Doherty test circuit

AN10885#3

4.1 BLF7G22LS-130 Doherty test circuit components

Table 2. BLF7G22LS-130 Doherty test circuit components

Designator	Description	Part identifier	Manufacturer
Input PCB	Rogers 3006; ϵ_r = 6.15, ± 0.15;	BLF7G22LS-130 Doherty PA Input-Rev1	Ohio circuits
Output PCB	thickness 0.64 mm (0.025"); 35 μm (1 oz.) copper on each side; <u>Ref. 1 on page 13</u>	BLF7G22LS-130 Doherty PA Output-Rev1	Ohio circuits
Q1	78L08 voltage regulator	NJM#78L08UA-ND	NJR
Q2	2N2222 NPN transistor	MMBT2222	Fairchild
Q3	BLF7G22LS-130	BLF7G22LS-130	Ampleon
R1, R14	9.1 Ω	CRCW08059R09FKEA	Vishay Dale
R2, R3, R17	430 Ω	CRCW0805432RFKEA	Vishay Dale
R4	75 Ω	CRCW080575R0FKTA	Vishay Dale
R5	200 Ω , potentiometer	3214-1-201E	Bourns
R6	2 kΩ	CRCW08052K00FKTA	Vishay Dale
R7, R12	1.1 kΩ	CRCW08051K10FKEA	Vishay Dale
R8	11 kΩ	CRCW080511K0FKEA	Vishay Dale
R9	5.1 Ω	CRCW08055R11FKEA	Vishay Dale
R10	5.1 kΩ	CRCW08055K10FKTA	Vishay Dale
R11	910 Ω	CRCW0805909RFKTA	Vishay Dale
R13	499 Ω, 0.5 W	CRCW2010499RFKEF	Vishay Dale
R15	SMT 2010 50 Ω $R_{\rm L}$	-	EMC
R16	0 Ω	-	Vishay Dale
X1	3 dB, hybrid coupler, 30 W	1J503S	Anaren
L1, L2	Ferroxcube bead	2743019447	Fair Rite
C1, C2, C4	100 nF ceramic 0805	S0805W104K1HRN-P4	MultiComp
C3	4.7 μF	C4532X7R1H475M	TDK
C5	1 μF	C3216X7R1H105K	TDK
C6, C7, C19	15 pF	600F	American Technical Ceramics
C8	12 pF	600F	American Technical Ceramics
C13, C14	15 pF	ATC100B150JT500X	American Technical Ceramics
C9, C10, C11, C12	1 μF	GRM31CR72A105KA01L	MuRata
C15, C16	10 μF	GRM32DF51H106ZA01L	MuRata
C20	220 $\mu\text{F},$ 50 V electrolytic SMT	PCE3474CT-ND	Panasonic
C17	1.5 pF	600F	American Technical Ceramics
C18	1.8 pF	600F	American Technical Ceramics

5. Abbreviations

Table 3.	Abbreviations	
Acronym	Description	
ACPR	Adjacent Channel Power Ratio	
CCDF	Complementary Cumulative Distribution Function	
DPD	Digital PreDistortion	
LDMOS	Laterally Diffused Metal-Oxide Semiconductor	
PAR	Peak-to-Average power Ratio	
SMT	Surface-Mount Technology	
UMTS	Universal Mobile Telecommunications System	
W-CDMA	Wideband Code Division Multiple Access	

6. References

[1] **Data sheet 1.3000; RO3000 Series High Frequency Circuit Materials** – Advanced Circuit Materials Division; Rogers Corporation.

7. Legal information

7.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

7.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accept no liability for inclusion and/or use of Ampleon products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

7.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of the NXP group of companies and any reference to or use of the 'NXP' trademarks will be replaced by reference to or use of Ampleon's own. Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of the NXP group of companies and any reference to or use of the 'NXP' trademark will be replaced by reference to or use of the 'NXP' trademark.

8. Contents

1	Introduction 3
2	Test summary 3
3	RF performance 4
3.1	Network analyzer measurements 4
3.2	IS-95 measurements 5
3.3	2-carrier W-CDMA measurements
3.4	Peak output power measurements
3.5	DPD measurements 8
4	BLF7G22LS-130 Doherty test circuit 11
4.1	BLF7G22LS-130 Doherty test circuit
	components 12
5	Abbreviations 13
6	References
7	Legal information
7.1	Definitions
7.2	Disclaimers
7.3	Trademarks 14
8	Contents 15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Ampleon The Netherlands B.V. 2015.

All rights reserved.

For more information, please visit: http://www.ampleon.com For sales office addresses, please visit: http://www.ampleon.com/sales

Date of release: 1 September 2015 Document identifier: AN10885#3